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The objective of this work is to provide a methodology to solve the problem

of approximating globally optimal Fekete point con�gurations. Roughly spoken,

this problem comes down to distributing a number of points over a sphere, such

that the points are, in some sense, optimally spread over the sphere. Such con�g-

urations play an important role in many areas of scienti�c modeling. Following

a brief discussion of the analytical background, Lipschitz global optimization

(LGO) is applied to determine { i.e., to numerically approximate { Fekete point

con�gurations. Next to this optimization approach, an alternative strategy by

formulating a set of di�erential-algebraic equations (DAEs) of index 2 will be

considered. The steady states of the DAEs coincide with the optima of the func-

tion to be minimized. Illustrative numerical results { with con�gurations of up

to 150 Fekete points { are presented, to show the viability of both approaches.
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1. Introduction

We shall consider the following classical problem: given the unit sphere (ball)

B in the Euclidean real space IR3, and a positive integer n, �nd the n-tuple of

points (unit length vectors)

x(n) = fxi; i = 1; : : : ; ng ; xi = (xi1; xi2; xi3)

on the surface S2 of B, which maximizes the product of distances between all

possible pairs fxi; xjg, 1 � i < j � n. In other words, we are interested in

�nding the global maximum of the function

fn(x(n)) =
Y

1�i<j�n

kxi � xjk ; xi 2 S2 ; (1)

where k � k indicates the Euclidean norm. A set of vectors x�(n) = fx�i ; i =

1; : : : ; ng, where x�i 2 S2, which satis�es the relations

f�n = fn(x
�(n)) = max

x(n)
fn(x(n)) ; xi 2 S2; (i = 1; : : : ; n) ; (2)

is called elliptic Fekete points of order n [2]. We shall refer to (2) as the Fekete

(global optimization) problem.

Let us note �rst of all that |by the classical theorem of Weierstrass| the

optimization problem (2) has globally optimal solution(s). Second, although

|for obvious reasons of symmetry| there are in�nitely many vector sets x�(n)

which satisfy (2), the solution can easily be made unambiguous (as will be seen

in x3). Consequently, we shall analyze the problem of �nding x�(n), and the

corresponding function value f�n := fn(x
�(n)).

The analysis and determination of elliptic Fekete point sets have been of

great theoretical interest for several decades: consult, e.g., [2, 12]. Apparently,

it also represents a longstanding numerical challenge: Pardalos [8] states it as

an open problem. Additionally, because of the direct relation of the formulation

(2) to models in potential theory [13], the solution of the Fekete problem (and

its possible modi�cations) has also important practical aspects; we shall return

to this point later.

We will start with a short overview of some analytical results concern-

ing Fekete points and related topics, followed by a description of the chosen

parametrization of Fekete point sets. In x4 and x5 the Lipschitzian Global

Optimization (LGO) approach and the formulation in terms of Di�erential-

Algebraic Equations (DAEs) will be discussed, respectively. We also give a

summary of the numerical results and the corresponding performances of both

approaches in x6. The last section presents some concluding remarks and future

perspectives.

2. A brief review of some analytical background

The following notes are largely based on the works of Tsuji [13], and Shub and

Smale [12] Let D be a bounded closed set in IR3 which contains in�nitely many
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points. Taking n vectors z1; :::; zn from D, de�ne (cf. (1)) z(n) = fz1; : : : ; zng,

Vn(z(n)) :=
Y

1�i<j�n

kzi � zjk ; (3)

and

V �n := Vn(z
�(n)) := max

z(n)
Vn(z(n)) : (4)

De�ne now the normalized value of V �n by

(n2)dn := dn(D) :=
p
V �n > 0 ; (5)

then the following general result |due to Fekete [2]| is valid.

Theorem 1. dn+1 � dn; therefore �(D) = lim
n!1

dn exists.

Proof See Tsuji [13, p. 71]. 2

Definition 1. The quantity �(D) is called the trans�nite diameter of the

set D.

The apparent connection of Fekete's trans�nite diameter with certain problems

of packing |i.e., `�nd a set of points in D which are located so that no two are

very close together'| is discussed, e.g., by Lubotzky, Phillips, and Sarnak

[7]. In this context, they also refer briey to the connection of the trans�nite

diameter and the so-called elliptic capacity. In problems of �nding electrostatic

equilibria, the resulting point con�gurations |modeling repellent bodies| are

located on a corresponding equipotential surface. Obviously, physically sta-

ble, minimal energy con�gurations are of great importance also in other areas

of natural sciences, most notably, in physics and chemistry. Although both

the topology of the potential surface in question and the functional form (the

underlying analytical description) of characterizing the `goodness' of point con-

�gurations may vary, the result described by Theorem 1 bears direct relevance

to such problems, under very general conditions.

Shub and Smale [12, p. 9] remark that the trans�nite diameter of the

sphere of radius 1
2
equals e�

1
2 . This directly leads to the estimate (recall (2))

(n2)dn(S
2) =

p
f�n � 2e�

1
2 = 1:21306132::: ; (6)

the approximation is valid for su�ciently large n. Theorem 1 also provides a

lower bound for the solution of the maximization problem in (2):

f�n �
�
2e�

1
2

�(n2)
: (7)
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This estimate shows the rate of increase of the global optimum value, as a

function of the number of Fekete points in the optimal con�guration. One can

also use the estimate dn+1 � dn, which directly leads to

f�n+1 � (f�n)
n+1

n�1 : (8)

The pair of relations (7){(8) provides valid lower and upper bounds; (8) also

bounds the rate of increase of subsequent optimal function values in the Fekete

problem.

Concluding this brief review of some essential analytical background, let us

note �nally that Shub and Smale also refer to the apparently signi�cant numer-

ical di�culty of �nding the globally optimal con�guration x�(n), for a given

|not too small| n. Di�culties arise due to several reasons: viz., the above

mentioned various symmetries of the function fn, and |more essentially|

its inherent multiextremality. Obviously, fn(x(n)) equals zero, whenever (at

least) two points xi coincide. Furthermore |see (7)| its maximal value very

rapidly increases as a function of n. These properties together lead to func-

tions fn which tend to change in an extremely `abrupt' manner, making any

perceivable numerical solution procedure inherently tedious.

In the following two sections, �rst we shall introduce a suitable problem

representation, and then consider a global optimization approach to solving

Fekete problems (approximately), in a robust and numerically viable sense.

3. Unique parametric representation of n-tuple point

configurations on S2

It is a natural approach to represent arbitrary point con�gurations on the

surface S2 by spherical coordinates. Let us denote the three unit vectors in the

usual Cartesian coordinate setting by e1, e2, and e3. Furthermore, for xi 2 S2,

let �i denote the angle between xi and its projection onto the plane de�ned by

e1 and e2; and �i denote the angle between this projection and e1. Then the n-

tuple x(n) |consisting of corresponding unit length vectors xi, i = 1; : : : ; n|

is described by

xi1 = cos(�i) cos(�i) ;

xi2 = sin(�i) cos(�i) ;

�
0 � �i < 2�

��=2 � �i � �=2

�
(9)

xi3 = sin(�i) :

We shall also use the equivalent parametrization, with the auxiliary variables

�i

0 � �i < 2� ;

�1 � �i � 1 ; (��=2 � �i := arcsin(�i) � �=2) : (10)

This results in replacing the calculation of xi3 in (9) simply by xi3 = �i. The

reparametrization has the advantage that if �i and �i are taken from a uniform
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distribution from their domains, then the corresponding points xi have a uni-

form distribution on the sphere. This is especially important in the context of

randomized search strategies which are used in LGO.

In order to eliminate rotational symmetries, one can select and �x three

angles in the spherical representation (9) of x(n). We choose

�1 = �1 = �2 = 0 (i.e., �1 = �1 = �2 = 0) : (11)

Geometrically, this means that the unit vector e1 = (1; 0; 0) is always a compo-

nent of the optimized Fekete point con�guration. Additionally, at least another

(the second) vector in the Fekete set sought belongs to the fe1; e2g-plane. This

convention e�ectively reduces the number of unknown parameters in x(n) to

2n� 3.

4. Applying LGO approach

Since S2 is bounded and closed, and the objective function fn(x(n)) in (2) is

continuously di�erentiable, it is also Lipschitz-continuous on S2�S2�: : :�S2 =�
S2
�n
. In other words, for any given n and corresponding fn, there exists a

Lipschitz-constant L = L(n) such that for all possible pairs x(n); ex(n) from�
S2
�n

we have

jfn(x(n)) � fn(ex(n))j � Lkx(n)� ex(n)k
�
: (12)

The norm kx(n)� ex(n)k
�
, de�ned on

�
S2
�n
, is the sum of the componentwise

Euclidean norms.

As mentioned earlier, the function fn is expected to become very `steep'

in certain neighborhoods in
�
S2
�n
, especially when n becomes large. The

complicated structure of function fn can also be simply visualized, observing

that the derivative of fn has a non-polynomially increasing number of zeros

|as a function of n| indicating local minima, maxima and saddle points.

Consequently, we shall consider the Fekete problem (2) as an instance from the

broad category of Lipschitz global optimization problems, without further |

more narrow, and algorithmically exploitable| speci�cation. Note additionally

that only simple lower and upper bound (`box') constraints are explicitly stated

by the parametrization (9){(10).

The underlying global convergence theory of Lipschitz optimization algo-

rithms is discussed in detail by Horst and Tuy [5], and Pint�er [10], with

numerous references therein. The latter monograph also presents details on im-

plementing algorithms for continuous and Lipschitz global optimization, and

reviews a number of prospective applications and case studies.

The numerical results obtained on the basis of a program system called LGO

|abbreviating Lipschitz Global Optimizer| are given in x6 and compared with

the results obtained via an alternative approach which will be described in the

next section. For more details on LGO, consult [11].
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5. Formulation for DAE approach

As already mentioned, we have used two approaches to approximate Fekete

point sets numerically. The previous section dealt briey with a global opti-

mization approach. Another way to approximate Fekete point sets is based

upon the numerical solution of an index 2 system of di�erential-algebraic equa-

tions (DAEs). For more details on DAEs see Brenan et al. [1] or Hairer

et al. [4]. This section starts with a derivation of the DAE formulation. We

will show that the stable steady states of these DAEs coincide with the optima

of the function fn in (1). Some practical remarks concerning the numerical

implementation of this approach are also highlighted.

Let us consider a set of n repellent particles on the unit sphere. The coor-

dinates of the i-th particle are denoted by xi. Due to the dynamic behavior

of the particles, these coordinates will be parametrized by a time variable, t.

The movement of the particles is restricted in such a way that they will stay

on surface of the the unit sphere in IR3; xi(t) 2 S2. We de�ne the repulsive

force on particle i caused by particle j by

Fij =
xi � xj

kxi � xjk
: (13)

Note that the choice  = 3 can be interpreted as an electrical force a�ecting

particles with unit charge. Furthermore, we imply an adhesion force on the par-

ticles, due to which the particles will stop moving after some time. Denoting the

con�guration of the particles at time t by x(t) = fx1(t); : : : ; xn(t)g, Lagrange

mechanics states that x(t) satis�es the following system of di�erential-algebraic

equations:

x0 = q; (14)

q0 = g(x; q) +GT (x)�; (15)

0 = �(x); (16)

where q is the velocity vector, G = @�=@x and � 2 IRn. The function � :

IR3n ! IRn is the constraint, which states that the particles cannot leave the

unit sphere:

�i(x) = x2i;1 + x2i;2 + x2i;3 � 1:

The function g : IR6n ! IR3n is given by g = (gi), i = 1; : : : ; n, where

gi(x; q) =
X
j 6=i

Fij(x) +Ai(q);

where Fij is given by (13). The function Ai is the adhesion force a�ecting

particle i and is given by the formula

Ai = ��qi:
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Here, � is set to 0:5. The term GT (x)� in (15) represents the normal force

which keeps the particles on S2.

Let us denote the �nal con�guration by bx 2 IR3n. Since we know that the

speed of this �nal con�guration is 0, we can substitute q = 0 and x = bx in (15),

thus arriving at

0 =
X
j 6=i

Fij(bx) +GT (bx)� ;

which is equal to

X
i6=j

bxi � bxj
kbxi � bxjk = �2�ibxi : (17)

Let us now take the logarithm (which is a monotonous function) of fn(x(n))

in (1) and di�erentiate log(fn(x(n))) with respect to xi. Then, by applying the

method of Lagrange multipliers, we know that fn has a (local) maximum at x,

where x satis�es

ri log(fn(x)) =
X
i6=j

xi � xj

kxi � xjk2
= �ixi : (18)

Here, �i is the Lagrange multiplier. Comparison of (18) and (17) tells us that

computing bx for  = 2 gives the (local) optima of the function fn. In principle,

by solving the system (14){(16), it is possible to arrive at the global maximum

by varying the initial values and the adhesion parameter �. However, numer-

ical experiments show that for n � 150, even with a constant � and a �xed

strategy for choosing the initial values, one obtains values for fn that satisfy

the conditions (7){(8) and are at least as good as those obtained by the LGO

implementation (available at CWI since 1995). This will be shown in x6.

Now we describe how the DAE system given by the equations (14){(16)

and  = 2 can be solved numerically. Since (16) is a position constraint, the

system is of index 3. To arrive at a more stable formulation of the problem, we

stabilize the constraint (see [1, p. 153]) by replacing (14) by

x0 = q +GT (p)�; (19)

where � 2 IRn, and appending the di�erentiated constraint

0 = G(x)q: (20)

The system (19), (15), (16), (20) is now of index 2; the variables x and q are

of index 1, the variables � and � of index 2.

We choose the initial positions xi(0) on the intersection of S2 and the

fe1; e2g-plane, except the �rst particle, which is initially in (0; 0; 1). Choos-

ing q(0) = 0 yields �(0) = 0 and �0i(0) = h2xi(0); qi(0)i = 0. Consequently,

�00i (0) = h2xi(0); q
0
i(0)i

= h2xi(0); gi(x(0); q(0)) + 2�i(0)xi(0)i:

Requiring �00i (0) = 0 gives
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�i(0) = �
hxi(0); gi(x(0); q(0))i

2hxi(0); xi(0)i
= �

1

2
hxi(0); gi(p(0); q(0))i:

The problem is now of the form

M
dy

dt
= w(y); y(0) = y0; (21)

with

M =

�
I6n 0

0 0

�
;

y 2 IR8n; 0 � t � tend ; y =

0
BB@

x

q

�

�

1
CCA and w(y) =

0
BB@

q +GT�

g +GT�

�

Gq

1
CCA :

Here, tend is chosen such that

max
i2f1;2;:::;ng

k qi(tend)k < 10�14: (22)

Numerical experiments show that if tend = 1000, then (22) holds for n � 150.

Solving the problem numerically leads to a phenomenon that one might call

numerical bifurcation. Assume that two particles xi and xj are close to each

other at time t1 with xi;1(t1) > xj;1(t1). It may happen that the numerical

integration method applied with �nite error tolerance � computes a new stepsize

h� such that xi;1(t+h� ) > xj;1(t+h� ), whereas the same method applied with

error tolerance ~� results in a stepsize h~� for which xi;1(t + h~� ) < xj;1(t + h~� ).

This means that for di�erent error tolerances, the numerical integration method

may compute paths of particles that di�er signi�cantly. The occurrence of this

phenomenon is irrespective of the scale of the error tolerance and can happen for

every value of n (although it is more probable for larger values of n). However,

the quantity of interest here is (1) which is independent of the path that the

particles followed to arrive at the �nal con�guration.

To solve the DAE we use RADAU5 by Hairer and Wanner [3], which

is an implementation of the 3-stage implicit Runge{Kutta method of Radau

IIA type. For more information related to this code, we refer to Hairer and

Wanner [4]. RADAU5 can integrate problems of the form (21) up to index 3.

As an example, Figure 1 depicts the solution obtained by RADAU5 for

n = 20. The same solution in the f�; �g-plane (cf. (9)) |after a rotation such

that (11) is ful�lled| is shown in Figure 2.

Remark

For n = 20 the DAE formulation of the Fekete problem is included in the \Test

Set for IVP Solvers"[6].
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Figure 1. Final con�guration obtained with RADAU5 for n = 20. The large

ball is centered at the origin and only added to facilitate the 3-D perception.

6. Numerical results and discussion

From the previous exposition it should be clear that the numerical determina-

tion of Fekete point sets leads to rapidly growing computational demands which

can easily become prohibitive. Therefore |although `precise' globally optimal

solutions have been sought| the results reported in this section should be con-

sidered as numerical approximations obtained with a reasonable computational

e�ort, for the purposes of this exploratory study. The individual solution times

on a SGI workstation, Indy with 4 194 Mhz R10010SC processors, start with

a few seconds for both approaches up to 15 points and lead to CPU times

between 2 and 17 hours for n in the range of 100 to 150 Fekete points. Even a

more powerful computer can become inadequate for such a task.

In addition, memory limitations will become a serious drawback for the

DAE approach in case of increasing n. To give an impression: the size of the

executable �le for the DAE approach with 150 points was already 50 MByte,

while the LGO approach comes up with an executable of 0.1 MByte for the

same number of Fekete points. The highest order term of the storage required

by RADAU5 is 4(8n)2 real numbers. This means that using double precision,

we need about 2 � 103n2 bytes of memory. For n = 150 this is about 45 MByte,

which can be a severe restriction on small computer systems. Concerning this

comparison of the sizes |especially for n � 50| the LGO approach is favorite.

Later on in this section we show a more thorough comparison of the two

approaches. Numerical tests can be performed for smaller number of points on

a personal computer or a workstation, but in order to give an overall compari-
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son we did all the computations on the above mentioned, powerful, 4 processor

workstation. Faster machines are useful |and are even available right now|

of course, but the essential computational complexity of the Fekete problem

remains exponential. Applying a similar global (exhaustive) search methodol-

ogy to that of LGO, even on a (say) ten thousand times faster machine, the

hardware limitations could be easily reached. For this reason, di�erent heuris-

tic solution strategies need to play a role in solving Fekete problems for large

values of n.

Table 1 serves to summarize the results obtained on a workstation using

the LGO version described in [9] and the DAE approach.

� �!

�

�
!

0 2�

��=2

�=2

Figure 2. Final con�guration, as in Figure 1, where the Fekete points are given

in the f�; �g-plane. A rotation has been applied such that (11) is ful�lled.

Several additional points should be mentioned; see also the notes provided

in the table.

1. For almost all cases the DAE approach gives a slightly better solution,

although the di�erences are marginal. Except for the above mentioned

computer memory limitations, the DAE approach performs somewhat bet-

ter than the LGO approach (according to their given implementations).

It should be mentioned here that this optimization problem is special be-

cause it can be rewritten as a set of DAEs, for more general optimization

problems the solution cannot be obtained with a DAE solver and a more

general, e.g. LGO style, solver is indispensable.

2. For the values n = 2; 3; 4 and 6, the exact analytical solution is trivial, or
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can be easily veri�ed; with the exception of n = 2, however, all values in

the tables resulted from numerical calculations. Consequently, all entries

are approximate values, except when stated otherwise.

3. A note regarding the LGO approach: since the function value f�n grows

very rapidly as n increases, and the resulting (overall) Lipschitzian problem

characteristics are also rapidly becoming less favorable. Therefore the value

of fn(x(n)) has been directly optimized only up to n = 6. Starting from

n = 7, optimization using the original objective function form has been

replaced, by applying a logarithmic transformation.

4. In the LGO approach: `exact' (exhaustive) search has been attempted for

the `small' values n = 3; : : : ; 15. That is, up to n = 15, all entries have

been calculated by fully automatic LGO execution in which the stated

global and local limits imposed on the allowed search e�ort did not seem

to be restrictive. (In particular, the bound on the number of allowable

local search steps has not ever been attained, indicating that the LGO

search was completed by �nding a solution `as precise as possible' under

the given LGO parametrization.) In order to avoid very excessive runtimes,

in the cases n = 50; 60; : : : ; 125; 150 the number of global search function

evaluations was |based on the analysis of detailed LGO output listings,

but still somewhat arbitrarily| restricted by 250 000 to 750 000. In light

of the computational e�ort in smaller dimensional Fekete problems, such

limitations could be a bit `optimistic', and may have stopped the global

search phase somewhat prematurely. Furthermore, the local search e�ort

(limited by 100 000 to 300 000) has also been attained, in several higher

dimensional cases. Notwithstanding these numerical limitations, all LGO

runs provided `plausible' results, conforming with the theoretical bounds

and asymptotics reviewed in x2. The global and local search e�orts were

also chosen in such a way that their sum was comparable to the CPU time

for the DAE approach for n � 50.

5. Concerning the DAE approach: the input parameters for RADAU5 are

h0=atol=rtol=1d-4.

6. For both approaches the machine used: SGI workstation, Indy with 4 194

Mhz R10010SC processors.

7. Compiler: FORTRAN 77 of SGI with optimization: f77 -O.

8. Timing function: ETIME.

7. Generalizations and application perspectives

An obvious generalization of the Fekete problem |which immediately falls

within the scope of the numerical solution strategy suggested| is its extension

to arbitrary dimensionality, and for general compact sets. Let D be a bounded
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Table 1. Summary of the numerical results obtained with LGO and DAE

approach.

n 10log(f�(n)) 1 d(f�(n)) 2 CPU 3

for LGO for DAE for LGO for DAE

3 0.715681974 0.715681882 1.732050808 0.32 0.02

4 1.277905945 1.277906197 1.632993162 0.81 0.03

5 1.91980124 1.915913829 1.555894423 1.72 0.06

6 2.709262136 2.709269961 1.515716566 3.11 0.17

7 3.55244136 3.553605389 1.476451904 5.51 0.29

8 4.52830887 4.528830580 1.451255736 8.29 0.49

9 5.59671545 5.597079893 1.430455795 11.24 0.49

10 6.75809669 6.758978609 1.413186645 14.85 0.60

11 7.99809456 7.999912697 1.397825498 22.15 0.83

12 9.38208294 9.383429649 1.387308913 29.05 1.08

13 10.79686832 10.799480094 1.375481878 37.04 1.44

14 12.33009911 12.337356433 1.366392109 46.61 1.68

15 13.95238304 13.961645275 1.358213523 57.78 2.15

16 15.67958355 15.680702647 1.351053423 70.17 4.67

17 17.47670937 17.490362341 1.344638697 84.72 3.49

18 19.38352394 19.391373372 1.338877991 101.07 4.49

19 21.35863686 21.367241420 1.333382123 119.02 5.06

20 23.43731117 23.456734617 1.328790449 139.12 6.07

25 35.16385269 35.176771046 1.309953572 273.17 16.52

30 49.09183884 49.114039625 1.296898053 476.75 32.42

35 65.15724182 65.227582124 1.287141190 757.61 58.50

40 83.40406036 83.531197391 1.279650229 1012.75 138.31

45 103.83299255 103.993419796 1.273631696 1614.29 169.41

50 126.39979553 126.609262581 1.268687030 2222.95 224.81

60 178.03697205 178.291893702 1.261042964 3850.51 586.50

70 238.21658325 238.547125801 1.255385990 5949.21 1573.90

80 306.96221924 307.343814269 1.251009768 9102.11 3380.64

90 384.40673828 384.668442639 1.247518664 11950.35 5511.98

100 470.00125122 470.493394133 1.244655523 17919.00 8844.01

125 721.47052002 722.227981483 1.239340686 33587.70 23703.40

150 1026.29870605 1026.946736740 1.235653773 59967.91 55152.32

1 1 1 1.2130613947

1 For de�nition see (2).
2 For de�nition see (5). The f�(n) value from the DAE approach has been used

every time, except for n = 5.
3 In seconds.
4 Exact value: 10log(3

p
3) = 0:715681882 : : :

5 Exact value: 10log((8=3)3) = 1:2779061968 : : :
6 Exact value: 10log(512) = 2:7092699609 : : :
7 Recall (6).
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closed set in IRd d � 2, which contains in�nitely many points. Then (recalling

the discussion in x2) the generalized Fekete con�guration problem consists of

�nding an n-tuple of points z(n) = (z1; :::; zn) such that each zi belongs to D,

and the product

Vn(z(n)) :=
Y

1�i<j�n

kzi � zjk ; (23)

is maximized. As noted earlier, problems of this general class have relevance

in diverse areas of scienti�c modeling.

The higher dimensional case is also of interest in the area of nonlinear

regression. A linear approximation provides an ellipsoidal level set, which can

be used as an estimate for the level set of the regression variables. Evaluation of

the regression criterion at points which are distributed in a regular and uniform

way on such an ellipse gives good insight into the nonlinearity of the regression

problem; the ellipsoid turns into a `cashew nut', for example. The uniformly

distributed sample points on such an ellipsoidal level set can be obtained by

solving the Fekete problem (23), where D is the ellipsoidal level set and n the

number of sample points.

Again, the numerical solution approach |Lipschitzian global optimization

or DAE formulation| advocated by the present work is directly relevant to

analyze and solve such problems. This statement remains true, of course, if the

`simple' objective function type (23) is replaced by other suitable (Lipschitzian

function) models/formulae expressing the `quality' of the con�gurations sought.
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